Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Clin Invest ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530358

RESUMO

Gender affirming hormone therapy (GAHT) is often prescribed to transgender (TG) adolescents to alleviate gender dysphoria, but the impact of GAHT on the growing skeleton is unclear. We found GAHT to improve trabecular bone structure via increased bone formation in young male mice and not to affect trabecular structure in female mice. GAHT modified gut microbiome composition in both male and female mice. However, fecal microbiota transfers (FMT) revealed that GAHT-shaped gut microbiome was a communicable regulator of bone structure and turnover in male, but not in female mice. Mediation analysis identified two species of Bacteroides as significant contributors to the skeletal effects of GAHT in male mice, with Bacteroides supplementation phenocopying the effects of GAHT on bone. Bacteroides have the capacity to expand Treg populations in the gut. Accordingly, GAHT expanded intestinal regulatory T cells (Tregs) and stimulated their homing to the bone marrow (BM) in male but not in female mice. Attesting to the functional relevance of Tregs, pharmacological blockade of Treg expansion prevented GAHT-induced bone anabolism. In summary, in male mice GAHT stimulated bone formation and improved trabecular structure by promoting Treg expansion via a microbiome-mediated effect. In female mice GAHT neither improved nor impaired trabecular structure.

2.
Front Endocrinol (Lausanne) ; 14: 1237727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810879

RESUMO

The gut microbiome affects the inflammatory environment through effects on T-cells, which influence the production of immune mediators and inflammatory cytokines that stimulate osteoclastogenesis and bone loss in mice. However, there are few large human studies of the gut microbiome and skeletal health. We investigated the association between the human gut microbiome and high resolution peripheral quantitative computed tomography (HR-pQCT) scans of the radius and tibia in two large cohorts; Framingham Heart Study (FHS [n=1227, age range: 32 - 89]), and the Osteoporosis in Men Study (MrOS [n=836, age range: 78 - 98]). Stool samples from study participants underwent amplification and sequencing of the V4 hypervariable region of the 16S rRNA gene. The resulting 16S rRNA sequencing data were processed separately for each cohort, with the DADA2 pipeline incorporated in the16S bioBakery workflow. Resulting amplicon sequence variants were assigned taxonomies using the SILVA reference database. Controlling for multiple covariates, we tested for associations between microbial taxa abundances and HR-pQCT measures using general linear models as implemented in microbiome multivariable association with linear model (MaAslin2). Abundance of 37 microbial genera in FHS, and 4 genera in MrOS, were associated with various skeletal measures (false discovery rate [FDR] ≤ 0.1) including the association of DTU089 with bone measures, which was independently replicated in the two cohorts. A meta-analysis of the taxa-bone associations further revealed (FDR ≤ 0.25) that greater abundances of the genera; Akkermansia and DTU089, were associated with lower radius total vBMD, and tibia cortical vBMD respectively. Conversely, higher abundances of the genera; Lachnospiraceae NK4A136 group, and Faecalibacterium were associated with greater tibia cortical vBMD. We also investigated functional capabilities of microbial taxa by testing for associations between predicted (based on 16S rRNA amplicon sequence data) metabolic pathways abundance and bone phenotypes in each cohort. While there were no concordant functional associations observed in both cohorts, a meta-analysis revealed 8 pathways including the super-pathway of histidine, purine, and pyrimidine biosynthesis, associated with bone measures of the tibia cortical compartment. In conclusion, our findings suggest that there is a link between the gut microbiome and skeletal metabolism.


Assuntos
Densidade Óssea , Microbioma Gastrointestinal , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Osso e Ossos , Densidade Óssea/genética , Estudos de Coortes , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética
3.
Redox Biol ; 67: 102892, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741044

RESUMO

Males show higher incidence and severity than females in hepatic injury and many liver diseases, but the mechanisms are not well understood. Ferroptosis, an iron-mediated lipid peroxidation-dependent death, plays an important role in the pathogenesis of liver diseases. We determined whether hepatocyte ferroptosis displays gender difference, accounting for sexual dimorphism in liver diseases. Compared to female hepatocytes, male hepatocytes were much more vulnerable to ferroptosis by iron and pharmacological inducers including RSL3 and iFSP1. Male but not female hepatocytes exhibited significant increases in mitochondrial Fe2+ and mitochondrial ROS (mtROS) contents. Female hepatocytes showed a lower expression of iron importer transferrin receptor 1 (TfR1) and mitochondrial iron importer mitoferrin 1 (Mfrn1), but a higher expression of iron storage protein ferritin heavy chain 1 (FTH1). It is well known that TfR1 expression is positively correlated with ferroptosis. Herein, we showed that silencing FTH1 enhanced while knockdown of Mfrn1 decreased ferroptosis in HepG2 cells. Removing female hormones by ovariectomy (OVX) did not dampen but rather enhanced hepatocyte resistance to ferroptosis. Mechanistically, OVX potentiated the decrease in TfR1 and increase in FTH1 expression. OVX also increased FSP1 expression in ERK-dependent manner. Elevation in FSP1 suppressed mitochondrial Fe2+ accumulation and mtROS production, constituting a novel mechanism of FSP1-mediated inhibition of ferroptosis. In conclusion, differences in hepatocellular iron handling between male and female account, at least in part, for sexual dimorphism in induced ferroptosis of the hepatocytes.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Masculino , Feminino , Humanos , Ferroptose/genética , Carcinoma Hepatocelular/metabolismo , Fatores Sexuais , Caracteres Sexuais , Neoplasias Hepáticas/metabolismo , Hepatócitos/metabolismo , Ferro/metabolismo
4.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37425728

RESUMO

Males show higher incidence and severity than females in hepatic injury and many liver diseases, but the mechanisms are not well understood. Ferroptosis, an iron-mediated lipid peroxidation-dependent death, plays an important role in the pathogenesis of liver diseases. We determined whether hepatocyte ferroptosis displays gender difference, accounting for sexual dimorphism in liver diseases. Compared to female hepatocytes, male hepatocytes were much more vulnerable to ferroptosis by iron and pharmacological inducers including RSL3 and iFSP1. Male but not female hepatocytes exhibited significant increases in mitochondrial Fe 2+ and mitochondrial ROS (mtROS) contents. Female hepatocytes showed a lower expression of iron importer transferrin receptor 1 (TfR1) and mitochondrial iron importer mitoferrin 1 (Mfrn1), but a higher expression of iron storage protein ferritin heavy chain 1 (FTH1). It is well known that TfR1 expression is positively correlated with ferroptosis. Herein, we showed that silencing FTH1 enhanced while knockdown of Mfrn1 decreased ferroptosis in HepG2 cells. Removing female hormones by ovariectomy (OVX) did not dampen but rather enhanced hepatocyte resistance to ferroptosis. Mechanistically, OVX potentiated the decrease in TfR1 and increase in FTH1 expression. OVX also increased FSP1 expression in ERK-dependent manner. Elevation in FSP1 suppressed mitochondrial Fe 2+ accumulation and mtROS production, constituting a novel mechanism of FSP1-mediated inhibition of ferroptosis. In conclusion, differences in hepatocellular iron handling between male and female account, at least in part, for sexual dimorphism in induced ferroptosis of the hepatocytes.

5.
Nat Rev Nephrol ; 19(10): 646-657, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37488276

RESUMO

Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD-MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches. Interorgan crosstalk is increasingly acknowledged to have an important role in health and disease. Accordingly, mounting evidence suggests a role for both the immune system and the gut microbiome in bone and vascular biology. Gut dysbiosis, compromised gut epithelial barrier and immune cell dysfunction are prominent features of the uraemic milieu. These alterations might contribute to the inflammatory state observed in CKD and could have a central role in the pathogenesis of CKD-MBD. The emerging fields of osteoimmunology and osteomicrobiology add another level of complexity to the pathogenesis of CKD-MBD, but also create novel therapeutic opportunities.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Humanos , Distúrbio Mineral e Ósseo na Doença Renal Crônica/etiologia , Disbiose/complicações , Qualidade de Vida , Insuficiência Renal Crônica/metabolismo , Inflamação , Hormônio Paratireóideo
6.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37079375

RESUMO

The intake of dietary phosphate far exceeds recommended levels; however, the long-term health consequences remain relatively unknown. Here, the chronic physiological response to sustained elevated and reduced dietary phosphate consumption was investigated in mice. Although serum phosphate levels were brought into homeostatic balance, the prolonged intake of a high-phosphate diet dramatically and negatively impacted bone volume; generated a sustained increase in the phosphate responsive circulating factors FGF23, PTH, osteopontin and osteocalcin; and produced a chronic low-grade inflammatory state in the BM, marked by increased numbers of T cells expressing IL-17a, RANKL, and TNF-α. In contrast, a low-phosphate diet preserved trabecular bone while increasing cortical bone volume over time, and it reduced inflammatory T cell populations. Cell-based studies identified a direct response of T cells to elevated extracellular phosphate. Neutralizing antibodies against proosteoclastic cytokines RANKL, TNF-α, and IL-17a blunted the high-phosphate diet-induced bone loss identifying bone resorption as a regulatory mechanism. Collectively, this study illuminates that habitual consumption of a high-phosphate diet in mice induces chronic inflammation in bone, even in the absence of elevated serum phosphate. Furthermore, the study supports the concept that a reduced phosphate diet may be a simple yet effective strategy to reduce inflammation and improve bone health during aging.


Assuntos
Reabsorção Óssea , Fósforo na Dieta , Camundongos , Animais , Interleucina-17 , Fator de Necrose Tumoral alfa , Linfócitos T , Citocinas , Inflamação , Fosfatos
7.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36881482

RESUMO

IL-17A (IL-17), a driver of the inflammatory phase of fracture repair, is produced locally by several cell lineages including γδ T cells and Th17 cells. However, the origin of these T cells and their relevance for fracture repair are unknown. Here, we show that fractures rapidly expanded callus γδ T cells, which led to increased gut permeability by promoting systemic inflammation. When the microbiota contained the Th17 cell-inducing taxon segmented filamentous bacteria (SFB), activation of γδ T cells was followed by expansion of intestinal Th17 cells, their migration to the callus, and improved fracture repair. Mechanistically, fractures increased the S1P receptor 1-mediated (S1PR1-mediated) egress of Th17 cells from the intestine and enhanced their homing to the callus through a CCL20-mediated mechanism. Fracture repair was impaired by deletion of γδ T cells, depletion of the microbiome by antibiotics (Abx), blockade of Th17 cell egress from the gut, or Ab neutralization of Th17 cell influx into the callus. These findings demonstrate the relevance of the microbiome and T cell trafficking for fracture repair. Modifications of microbiome composition via Th17 cell-inducing bacteriotherapy and avoidance of broad-spectrum Abx may represent novel therapeutic strategies to optimize fracture healing.


Assuntos
Microbiota , Células Th17 , Camundongos , Animais , Consolidação da Fratura , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/genética
8.
Nat Commun ; 13(1): 4820, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35973996

RESUMO

Brain-derived neurotrophic factor (BDNF) and its tropomyosin-related kinase B receptor (TrkB) are expressed in human osteoblasts and mediate fracture healing. BDNF/TrkB signaling activates Akt that phosphorylates and inhibits asparagine endopeptidase (AEP), which regulates the differentiation fate of human bone marrow stromal cells (hBMSC) and is altered in postmenopausal osteoporosis. Here we show that R13, a small molecular TrkB receptor agonist prodrug, inhibits AEP and promotes bone formation. Though both receptor activator of nuclear factor kappa-Β ligand (RANK-L) and osteoprotegerin (OPG) induced by ovariectomy (OVX) remain comparable between WT and BDNF+/- mice, R13 treatment significantly elevates OPG in both mice without altering RANKL, blocking trabecular bone loss. Strikingly, both R13 and anti-RANK-L exhibit equivalent therapeutic efficacy. Moreover, OVX increases RANK-L and OPG in WT and AEP KO mice with RANK-L/OPG ratio lower in the latter than the former, attenuating bone turnover. 7,8-DHF, released from R13, activates TrkB and its downstream effector CREB, which is critical for OPG augmentation. Consequently, 7,8-DHF represses C/EBPß/AEP pathway, inhibiting RANK-L-induced RAW264.7 osteoclastogenesis. Therefore, our findings support that R13 exerts its therapeutic efficacy toward osteoporosis via inhibiting AEP and escalating OPG.


Assuntos
Osteoprotegerina , Pró-Fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo , Proteínas de Transporte , Cisteína Endopeptidases , Feminino , Humanos , Camundongos , NF-kappa B , Osteoclastos/fisiologia , Pró-Fármacos/farmacologia , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Receptor trkB
9.
JBMR Plus ; 6(7): e10636, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35866149

RESUMO

Cyclic adenosine monophosphate (cAMP)-dependent phosphodiesterase (PDE) inhibitors such as pentoxifylline (PTX) suppress cAMP degradation and promote cAMP-dependent signal transduction. PDE inhibitors increase bone formation and bone mass in preclinical models and are used clinically to treat psoriatic arthritis by targeting inflammatory mediators including activated T cells. T cell activation requires two signals: antigen-dependent CD3-activation, which stimulates cAMP production; and CD28 co-stimulation, which downregulates cAMP-signaling, through PDE activation. PDE-inhibitors consequently suppress T cell activation by disrupting CD28 co-stimulation. Interestingly, we have reported that when CD8+ T cells are activated in the absence of CD28 co-stimulation, they secrete Wnt-10b, a bone anabolic Wnt ligand that promotes bone formation. In the present study, we investigated whether the bone anabolic activity of the PDE-inhibitor PTX, has an immunocentric basis, involving Wnt-10b production by CD8+ T cells. When wild-type (WT) mice were administered PTX, biochemical markers of both bone resorption and formation were significantly increased, with net bone gain in the axial skeleton, as quantified by micro-computed tomography (µCT). By contrast, PTX increased only bone resorption in T cell knockout (KO) mice, causing net bone loss. Reconstituting T cell-deficient mice with WT, but not Wnt-10b knockout (KO) CD8+ T cells, rescued bone formation and prevented bone loss. To study the role of cAMP signaling in Wnt-10b expression, reverse-transcription polymerase chain reaction (RT-PCR) and luciferase-reporter assays were performed using primary T cells. PDE inhibitors intensified Wnt-10b promoter activity and messenger RNA (mRNA) accumulation in CD3 and CD28 activated CD8+ T cells. In contrast, inhibiting the cAMP pathway mediators protein kinase A (PKA) and cAMP response element-binding protein (CREB), suppressed Wnt-10b expression by T cells activated in the absence of CD28 co-stimulation. In conclusion, the data demonstrate a key role for Wnt-10b production by CD8+ T cells in the bone anabolic response to PDE-inhibitors and reveal competing T cell-independent pro-resorptive properties of PTX, which dominate under T cell-deficient conditions. Selective targeting of CD8+ T cells by PDE inhibitors may be a beneficial approach for promoting bone regeneration in osteoporotic conditions. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

10.
J Clin Invest ; 132(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35503658

RESUMO

Bone metastases are frequent complications of malignant melanoma leading to reduced quality of life and significant morbidity. Regulation of immune cells by the gut microbiome influences cancer progression, but the role of the microbiome in tumor growth in bone is unknown. Using intracardiac or intratibial injections of B16-F10 melanoma cells into mice, we showed that gut microbiome depletion by broad-spectrum antibiotics accelerated intraosseous tumor growth and osteolysis. Microbiome depletion blunted melanoma-induced expansion of intestinal NK cells and Th1 cells and their migration from the gut to tumor-bearing bones. Demonstrating the functional relevance of immune cell trafficking from the gut to the bone marrow (BM) in bone metastasis, blockade of S1P-mediated intestinal egress of NK and Th1 cells, or inhibition of their CXCR3/CXCL9-mediated influx into the BM, prevented the expansion of BM NK and Th1 cells and accelerated tumor growth and osteolysis. Using a mouse model, this study revealed mechanisms of microbiota-mediated gut-bone crosstalk that are relevant to the immunological restraint of melanoma metastasis and tumor growth in bone. Microbiome modifications induced by antibiotics might have negative clinical consequences in patients with melanoma.


Assuntos
Microbioma Gastrointestinal , Melanoma Experimental , Osteólise , Animais , Antibacterianos/farmacologia , Desenvolvimento Ósseo , Humanos , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Qualidade de Vida , Células Th1/patologia
11.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586672

RESUMO

Estrogen deficiency causes a gut microbiome-dependent expansion of BM Th17 cells and TNF-α-producing T cells. The resulting increased BM levels of IL-17a (IL-17) and TNF stimulate RANKL expression and activity, causing bone loss. However, the origin of BM Th17 cells and TNF+ T cells is unknown. Here, we show that ovariectomy (ovx) expanded intestinal Th17 cells and TNF+ T cells, increased their S1P receptor 1-mediated (S1PR1-mediated) egress from the intestine, and enhanced their subsequent influx into the BM through CXCR3- and CCL20-mediated mechanisms. Demonstrating the functional relevance of T cell trafficking, blockade of Th17 cell and TNF+ T cell egress from the gut or their influx into the BM prevented ovx-induced bone loss. Therefore, intestinal T cells are a proximal target of sex steroid deficiency relevant for bone loss. Blockade of intestinal T cell migration may represent a therapeutic strategy for the treatment of postmenopausal bone loss.


Assuntos
Movimento Celular/imunologia , Intestinos , Osteoporose Pós-Menopausa , Ovariectomia , Células Th17/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Quimiocina CCL20/genética , Quimiocina CCL20/imunologia , Feminino , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Knockout , Osteoporose Pós-Menopausa/imunologia , Osteoporose Pós-Menopausa/microbiologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Fator de Necrose Tumoral alfa/genética
12.
Elife ; 102021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33432923

RESUMO

Genetic factors account for the majority of the variance of human bone mass, but the contribution of non-genetic factors remains largely unknown. By utilizing maternal/offspring transmission, cohabitation, or fecal material transplantation (FMT) studies, we investigated the influence of the gut microbiome on skeletal maturation. We show that the gut microbiome is a communicable regulator of bone structure and turnover in mice. In addition, we found that the acquisition of a specific bacterial strain, segmented filamentous bacteria (SFB), a gut microbe that induces intestinal Th17 cell expansion, was sufficient to negatively impact skeletal maturation. These findings have significant translational implications, as the identification of methods or timing of microbiome transfer may lead to the development of bacteriotherapeutic interventions to optimize skeletal maturation in humans. Moreover, the transfer of SFB-like microbes capable of triggering the expansion of human Th17 cells during therapeutic FMT procedures could lead to significant bone loss in fecal material recipients.


Assuntos
Microbioma Gastrointestinal , Esqueleto/crescimento & desenvolvimento , Animais , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Camundongos
13.
Clin Nutr ; 40(2): 467-475, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32620447

RESUMO

BACKGROUND & AIMS: There is a considerable degree of variation in bone mineral density (BMD) within populations. Use of plasma metabolomics may provide insight into established and novel determinants of BMD variance, such as nutrition and gut microbiome composition, to inform future prevention and treatment strategies for loss of BMD. Using high-resolution metabolomics (HRM), we examined low-molecular weight plasma metabolites and nutrition-related metabolic pathways associated with BMD. METHODS: This cross-sectional study included 179 adults (mean age 49.5 ± 10.3 yr, 64% female). Fasting plasma was analyzed using ultra-high-resolution mass spectrometry with liquid chromatography. Whole body and spine BMD were assessed by dual energy X-ray absorptiometry and expressed as BMD (g/cm2) or Z-scores. Multiple linear regression, pathway enrichment, and module analyses were used to determine key plasma metabolic features associated with bone density. RESULTS: Of 10,210 total detected metabolic features, whole body BMD Z-score was associated with 710 metabolites, which were significantly enriched in seven metabolic pathways, including linoleic acid, fatty acid activation and biosynthesis, and glycerophospholipid metabolism. Spine BMD was associated with 970 metabolites, significantly enriched in pro-inflammatory pathways involved in prostaglandin formation and linoleic acid metabolism. In module analyses, tryptophan- and polyamine-derived metabolites formed a network that was significantly associated with spine BMD, supporting a link with the gut microbiome. CONCLUSIONS: Plasma HRM provides comprehensive information relevant to nutrition and components of the microbiome that influence bone health. This data supports pro-inflammatory fatty acids and the gut microbiome as novel regulators of postnatal bone remodeling.


Assuntos
Densidade Óssea , Cromatografia Líquida/métodos , Ácido Linoleico/sangue , Espectrometria de Massas/métodos , Metabolômica/métodos , Absorciometria de Fóton , Adulto , Biomarcadores/análise , Estudos Transversais , Feminino , Humanos , Modelos Lineares , Vértebras Lombares/diagnóstico por imagem , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Prostaglandinas/sangue , Medição de Risco
14.
J Clin Endocrinol Metab ; 106(3): 636-645, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33254225

RESUMO

Exposed surfaces of mammals are colonized with 100 trillion indigenous bacteria, fungi, and viruses, creating a diverse ecosystem known as the human microbiome. The gut microbiome is the richest microbiome and is now known to regulate postnatal skeletal development and the activity of the major endocrine regulators of bone. Parathyroid hormone (PTH) is one of the bone-regulating hormone that requires elements of the gut microbiome to exert both its bone catabolic and its bone anabolic effects. How the gut microbiome regulates the skeletal response to PTH is object of intense research. Involved mechanisms include absorption and diffusion of bacterial metabolites, such as short-chain fatty acids, and trafficking of immune cells from the gut to the bone marrow. This review will focus on how the gut microbiome communicates and regulates bone marrow cells in order to modulate the skeletal effects of PTH.


Assuntos
Osso e Ossos/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Hormônio Paratireóideo/farmacologia , Animais , Desenvolvimento Ósseo/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/fisiologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/fisiologia , Humanos
15.
Nutrients ; 12(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081124

RESUMO

Bone is a dynamic tissue that is in a constant state of remodeling. Bone turnover markers (BTMs), procollagen type I N-terminal propeptide (P1NP) and C-terminal telopeptides of type I collagen (CTX), provide sensitive measures of bone formation and resorption, respectively. This study used ultra-high-resolution metabolomics (HRM) to determine plasma metabolic pathways and targeted metabolites related to the markers of bone resorption and formation in adults. This cross-sectional clinical study included 34 adults (19 females, mean 27.8 years), without reported illnesses, recruited from a US metropolitan area. Serum BTM levels were quantified by an ELISA. Plasma HRM utilized dual-column liquid chromatography and mass spectrometry to identify metabolites and metabolic pathways associated with BTMs. Metabolites significantly associated with P1NP (p < 0.05) were significantly enriched in pathways linked to the TCA cycle, pyruvate metabolism, and metabolism of B vitamins important for energy production (e.g., niacin, thiamin). Other nutrition-related metabolic pathways associated with P1NP were amino acid (proline, arginine, glutamate) and vitamin C metabolism, which are important for collagen formation. Metabolites associated with CTX levels (p < 0.05) were enriched within lipid and fatty acid beta-oxidation metabolic pathways, as well as fat-soluble micronutrient pathways including, vitamin D metabolism, vitamin E metabolism, and bile acid biosynthesis. P1NP and CTX were significantly related to microbiome-related metabolites (p < 0.05). Macronutrient-related pathways including lipid, carbohydrate, and amino acid metabolism, as well as several gut microbiome-derived metabolites were significantly related to BTMs. Future research should compare metabolism BTMs relationships reported here to aging and clinical populations to inform targeted therapeutic interventions.


Assuntos
Remodelação Óssea/fisiologia , Colágeno Tipo I/sangue , Metaboloma , Fenômenos Fisiológicos da Nutrição/fisiologia , Osteogênese/fisiologia , Fragmentos de Peptídeos/sangue , Peptídeos/sangue , Pró-Colágeno/sangue , Adulto , Ácidos e Sais Biliares/metabolismo , Biomarcadores/sangue , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Micronutrientes/metabolismo , Osteoblastos , Osteoclastos , Vitaminas/metabolismo
16.
Nat Commun ; 11(1): 468, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980603

RESUMO

Bone loss is a frequent but not universal complication of hyperparathyroidism. Using antibiotic-treated or germ-free mice, we show that parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched by the Th17 cell-inducing taxa segmented filamentous bacteria (SFB). SFB+ microbiota enabled PTH to expand intestinal TNF+ T and Th17 cells and increase their S1P-receptor-1 mediated egress from the intestine and recruitment to the bone marrow (BM) that causes bone loss. CXCR3-mediated TNF+ T cell homing to the BM upregulated the Th17 chemoattractant CCL20, which recruited Th17 cells to the BM. This study reveals mechanisms for microbiota-mediated gut-bone crosstalk in mice models of hyperparathyroidism that may help predict its clinical course. Targeting the gut microbiota or T cell migration may represent therapeutic strategies for hyperparathyroidism.


Assuntos
Microbioma Gastrointestinal/imunologia , Osteoporose/etiologia , Hormônio Paratireóideo/imunologia , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Animais , Transplante de Microbiota Fecal , Feminino , Vida Livre de Germes , Bacilos Gram-Positivos Formadores de Endosporo/imunologia , Hiperparatireoidismo Primário/complicações , Hiperparatireoidismo Primário/imunologia , Hiperparatireoidismo Primário/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoporose/imunologia , Osteoporose/microbiologia , Fator de Necrose Tumoral alfa/imunologia
17.
J Clin Invest ; 130(4): 1767-1781, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917685

RESUMO

Parathyroid hormone (PTH) is a critical regulator of skeletal development that promotes both bone formation and bone resorption. Using microbiota depletion by wide-spectrum antibiotics and germ-free (GF) female mice, we showed that the microbiota was required for PTH to stimulate bone formation and increase bone mass. Microbiota depletion lowered butyrate levels, a metabolite responsible for gut-bone communication, while reestablishment of physiologic levels of butyrate restored PTH-induced anabolism. The permissive activity of butyrate was mediated by GPR43 signaling in dendritic cells and by GPR43-independent signaling in T cells. Butyrate was required for PTH to increase the number of bone marrow (BM) regulatory T cells (Tregs). Tregs stimulated production of the osteogenic Wnt ligand Wnt10b by BM CD8+ T cells, which activated Wnt-dependent bone formation. Together, these data highlight the role that butyrate produced by gut luminal microbiota plays in triggering regulatory pathways, which are critical for the anabolic action of PTH in bone.


Assuntos
Butiratos/metabolismo , Microbioma Gastrointestinal , Osteogênese , Hormônio Paratireóideo/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Camundongos Knockout , Hormônio Paratireóideo/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Linfócitos T Reguladores/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
18.
J Clin Invest ; 129(8): 3018-3028, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31305265

RESUMO

The gut microbiome is a key regulator of bone health that affects postnatal skeletal development and skeletal involution. Alterations in microbiota composition and host responses to the microbiota contribute to pathological bone loss, while changes in microbiota composition that prevent, or reverse, bone loss may be achieved by nutritional supplements with prebiotics and probiotics. One mechanism whereby microbes influence organs of the body is through the production of metabolites that diffuse from the gut into the systemic circulation. Recently, short-chain fatty acids (SCFAs), which are generated by fermentation of complex carbohydrates, have emerged as key regulatory metabolites produced by the gut microbiota. This Review will focus on the effects of SCFAs on the musculoskeletal system and discuss the mechanisms whereby SCFAs regulate bone cells.


Assuntos
Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/microbiologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Animais , Doenças Ósseas Metabólicas/patologia , Doenças Ósseas Metabólicas/terapia , Humanos , Prebióticos , Probióticos/uso terapêutico
19.
J Bone Miner Res ; 34(2): 349-360, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30399207

RESUMO

Primary hyperparathyroidism (PHPT) is a condition where elevated PTH levels lead to bone loss, in part through increased production of the osteoclastogenic factor IL-17A, by bone marrow (BM) T-helper 17 (Th17) cells, a subset of helper CD4+ T cells. In animals, PHPT is modeled by continuous PTH treatment (cPTH). In mice, an additional critical action of cPTH is the capacity to increase the production of RANKL by osteocytes. However, a definitive link between IL-17A and osteocytic expression of RANKL has not been made. Here we show that cPTH fails to induce cortical and trabecular bone loss and causes less intense bone resorption in conditional knock-out (IL-17RAΔOCY ) male and female mice lacking the expression of IL-17A receptor (IL-17RA) in dentin matrix protein 1 (DMP1)-8kb-Cre-expressing cells, which include osteocytes and some osteoblasts. Therefore, direct IL-17RA signaling in osteoblasts/osteocytes is required for cPTH to exert its bone catabolic effects. In addition, in vivo, silencing of IL-17RA signaling in in DMP1-8kb-expressing cells blunts the capacity of cPTH to stimulate osteocytic RANKL production, indicating that cPTH augments osteocytic RANKL expression indirectly, via an IL-17A/IL-17RA-mediated mechanism. Thus, osteocytic production of RANKL and T cell production of IL-17A are both critical for the bone catabolic activity of cPTH. © 2018 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea/metabolismo , Osteócitos/metabolismo , Hormônio Paratireóideo/metabolismo , Ligante RANK/biossíntese , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Hiperparatireoidismo Primário/genética , Hiperparatireoidismo Primário/metabolismo , Hiperparatireoidismo Primário/patologia , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos , Camundongos Knockout , Osteócitos/patologia , Hormônio Paratireóideo/genética , Ligante RANK/genética , Receptores de Interleucina-17/genética
20.
J Clin Densitom ; 22(1): 1-19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30366683

RESUMO

The Santa Fe Bone Symposium is an annual meeting devoted to clinical applications of recent advances in skeletal research. The 19th Santa Fe Bone Symposium convened August 3-4, 2018, in Santa Fe, New Mexico, USA. Attendees included physicians of many specialties, fellows in training, advanced practice providers, clinical researchers, and bone density technologists. The format consisted of lectures, case presentations by endocrinology fellows, and panel discussions, with all involving extensive interactive discussions. Topics were diverse, including an evolutionary history of calcium homeostasis, osteoporosis treatment in the very old, optimizing outcomes with orthopedic surgery, microbiome and bone, new strategies for combination and sequential therapy of osteoporosis, exercise as medicine, manifestations of parathyroid hormone excess and deficiency, parathyroid hormone as a therapeutic agent, cell senescence and bone health, and managing patients outside clinical practice guidelines. The National Bone Health Alliance conducted a premeeting on development of fracture liaison services. A workshop was devoted to Bone Health TeleECHO (Bone Health Extension for Community Healthcare Outcomes), a strategy of ongoing medical education for healthcare professions to expand capacity to deliver best practice skeletal healthcare in underserved communities and reduce the osteoporosis treatment gap.


Assuntos
Terapia por Exercício , Fraturas Espontâneas/terapia , Osteoporose/fisiopatologia , Osteoporose/terapia , Hormônio Paratireóideo/farmacologia , Fraturas da Coluna Vertebral/terapia , Fatores Etários , Animais , Remodelação Óssea , Osso e Ossos/metabolismo , Senescência Celular , Consolidação da Fratura/efeitos dos fármacos , Fraturas Espontâneas/etiologia , Fraturas Espontâneas/prevenção & controle , Humanos , Microbiota/fisiologia , Uso Off-Label , Osteoporose/complicações , Hormônio Paratireóideo/uso terapêutico , Guias de Prática Clínica como Assunto , Probióticos/uso terapêutico , Fatores de Risco , Fraturas da Coluna Vertebral/etiologia , Fusão Vertebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...